Coherence Properties of the Entangled Two-Photon Field Produced by Parametric Down-Conversion

Anand Kumar Jha

Robert W. Boyd Research Group
The Institute of Optics, University of Rochester, Rochester, NY

Institute for Quantum Computing

University of Waterloo, ON, January 7, 2010

Introduction and Outline

Quantum Entanglement

- EPR paradox and non-locality, Hidden variable theories, Bell inequalities ...
- Quantum cryptography, Quantum dense coding, Quantum lithography...

Parametric down-conversion provides a source of entangled photons

Introduction and Outline

Quantum Entanglement

- EPR paradox and non-locality, Hidden variable theories, Bell inequalities ...
- Quantum cryptography, Quantum dense coding, Quantum lithography...

Parametric down-conversion provides a source of entangled photons

$$
\omega_{p}=\omega_{s}+\omega_{i}
$$

Entanglement in time and energy
"Temporal" two-photon coherence

$$
\boldsymbol{q}_{p}=\boldsymbol{q}_{s}+\boldsymbol{q}_{i} \quad \text { Entanglement in position and momentum }
$$

"Spatial" two-photon coherence
$l_{p}=l_{s}+l_{i} \quad$ Entanglement in angular position and orbital angular momentum
"Angular" two-photon coherence

Introduction and Outline

Quantum Entanglement

- EPR paradox and non-locality, Hidden variable theories, Bell inequalities ...
- Quantum cryptography, Quantum dense coding, Quantum lithography...

Parametric down-conversion provides a source of entangled photons

$\omega_{p}=\omega_{s}+\omega_{i}$

Entanglement in time and energy

"Temporal" two-photon coherence
$\boldsymbol{q}_{p}=\boldsymbol{q}_{s}+\boldsymbol{q}_{i} \quad$ Entanglement in position and momentum
"Spatial" two-photon coherence
$l_{p}=l_{s}+l_{i} \quad$ Entanglement in angular position and orbital angular momentum
"Angular" two-photon coherence

One-Photon Interference: "A photon interferes with itself " - Dirac

2

$D_{D_{A}}$

$$
\Delta l=l_{1}-l_{2}
$$

D DA_{A}
$I_{\mathrm{A}} \propto 1+\gamma(\Delta l) \cos \left(k_{0} \Delta l\right)$
Necessary condition for interference:

$$
\Delta l<l_{\mathrm{coh}}
$$

Two-Photon Interference

- Hong-Ou-Mandel effect
C. K. Hong et al., PRL 59, 2044 (1987)

- Postponed Compensation Experiment T. B. Pittman, PRL 77, 1917 (1996)

- Frustrated two-photon Creation T. J. Herzog et al., PRL 72, 629 (1994)

Two-Photon Interference

Two-Photon Interference

Two-Photon Interference

$\stackrel{D_{D_{i}}^{D_{s}}}{\mathrm{D}_{s}}$

$\xrightarrow[\mathrm{D}_{i}]{\mathrm{D}_{s}}$

$$
\Delta L \equiv l_{1}-l_{2}
$$

Two-Photon Interference

$$
\begin{aligned}
& \Delta L \equiv l_{1}-l_{2} \\
& \quad \text { two-photon path-length } \\
& \Delta L^{\prime} \equiv l_{1}^{\prime}-l_{2}^{\prime}
\end{aligned}
$$

two-photon path-asymmetry length

Two-Photon Interference

$$
R_{s i}=C\left[1+\gamma^{\prime}\left(\Delta L^{\prime}\right) \gamma(\Delta L) \cos \left(k_{0} \Delta L\right)\right]
$$

R. J. Glauber, Phys. Rev. 130, 2529 (1963)

Jha, O'Sullivan, Chan, and Boyd, PRA 77, 021801(R) (2008)

Experimental Verification

Jha, O'Sullivan, Chan, and Boyd, PRA 77, 021801(R) (2008)

Experimental Verification

- Hong-Ou-Mandel effect
C. K. Hong et al., PRL 59, 2044 (1987)

Jha, O'Sullivan, Chan, and Boyd, PRA 77, 021801(R) (2008)

Some One-Photon Interference Effects

$$
\Delta L=x_{s}+x_{i} \quad \Delta L^{\prime}=2 x_{s}-2 x_{i} \quad \gamma(\Delta L) \sim 1
$$

$$
R_{s i}=C\left\{1-\gamma^{\prime}\left(2 x_{s}-2 x_{i}\right) \cos \left[k_{0}\left(x_{s}+x_{i}\right)\right]\right\}
$$

Jha, O'Sullivan, Chan, and Boyd, PRA 77, 021801(R) (2008)

Some One-Photon Interference Effects

$$
R_{s i}=C\left\{1-\gamma^{\prime}\left(2 x_{s}-2 x_{i}\right) \cos \left[k_{0}\left(x_{s}+x_{i}\right)\right]\right\}
$$

- Induced Coherence
X. Y. Zou et al., PRL 67, 318 (1991)

Jha, O'Sullivan, Chan, and Boyd, PRA 77, 021801(R) (2008)

Some One-Photon Interference Effects

$$
R_{s i}=C\left\{1-\gamma^{\prime}\left(2 x_{s}-2 x_{i}\right) \cos \left[k_{0}\left(x_{s}+x_{i}\right)\right]\right\}
$$

- Induced Coherence
X. Y. Zou et al., PRL 67, 318 (1991)

Jha, O'Sullivan, Chan, and Boyd, PRA 77, 021801(R) (2008)

Exploring time-energy entanglement using geometric phase

Franson Interferometer J. D. Franson, PRL 62, 2205 (1989)

$$
R_{s i}=C\left[1+\cos \left(\Phi_{s}+\Phi_{i}\right)\right]
$$

Violation of CHSH Bell Inequality using dynamic phase

Brendel et al., PRL 66, 1142 (1991)
Kwiat et al., PRA 47, R2472 (1993)
Strekalov et al., PRA 54, R1 (1996)
Barreiro et al., PRL 95, 260501 (2005)

Exploring time-energy entanglement using geometric phase

Franson Interferometer J. D. Franson, PRL 62, 2205 (1989)

$R_{s i}=C\left\{1-\cos \left[k_{0}\left(x_{s}+x_{i}\right)+2 \beta_{s}+2 \beta_{i}\right]\right\}$
$R_{s i}=C\left[1+\cos \left(\Phi_{s}+\Phi_{i}\right)\right]$
Violation of CHSH Bell Inequality using dynamic phase

Brendel et al., PRL 66, 1142 (1991)
Kwiat et al., PRA 47, R2472 (1993)
Strekalov et al., PRA 54, R1 (1996)
Barreiro et al., PRL 95, 260501 (2005)

Violation of CHSH Bell Inequality using geometric (Pancharatnam, Berry) phase

Exploring time-energy entanglement using geometric phase

Franson Interferometer J. D. Franson, PRL 62, 2205 (1989)

$R_{s i}=C\left\{1-\cos \left[k_{0}\left(x_{s}+x_{i}\right)+2 \beta_{s}+2 \beta_{i}\right]\right\}$
Violation of CHSH Bell Inequality using geometric (Pancharatnam, Berry) phase

Jha, Malik, and Boyd, PRL 101, 180405 (2008)

$$
R_{s i}=C\left[1+\cos \left(\Phi_{s}+\Phi_{i}\right)\right]
$$

Violation of CHSH Bell Inequality using dynamic phase
Brendel et al., PRL 66, 1142 (1991)
Kwiat et al., PRA 47, R2472 (1993)
Strekalov et al., PRA 54, R1 (1996)
Barreiro et al., PRL 95, 260501 (2005)

Visibility: $V=77 \%(>70.7 \%)$
Bell Parameter: $|S|=2.18 \pm 0.04(>2.0)$

Introduction and Outline

Quantum Entanglement

- EPR paradox and non-locality, Hidden variable theories, Bell inequalities ...
- Quantum cryptography, Quantum dense coding, Quantum lithography...

Parametric down-conversion provides a source of entangled photons

$\omega_{p}=\omega_{s}+\omega_{i}$
$\boldsymbol{q}_{p}=\boldsymbol{q}_{s}+\boldsymbol{q}_{i}$
Entanglement in position and momentum
"Spatial" two-photon coherence
$l_{p}=l_{s}+l_{i}$

Entanglement in angular position and orbital angular momentum
"Angular" two-photon coherence

Spatial One-Photon Interference: review

Intensity at the detector:

$$
I_{A}\left(\boldsymbol{r}_{p}\right) \propto S\left(\boldsymbol{\rho}_{p 1}, z\right)+S\left(\boldsymbol{\rho}_{p 2}, z\right)+W\left(\boldsymbol{\rho}_{p 1}, \boldsymbol{\rho}_{p 2}, z\right) e^{-i k_{0}\left(d_{1}-d_{2}\right)}+\text { c.c. }
$$

Cross-spectral density:

$$
\left|W\left(\boldsymbol{\rho}_{p 1}, \boldsymbol{\rho}_{p 2}, z\right)\right|=\sqrt{S\left(\boldsymbol{\rho}_{p 1}, z\right) S\left(\boldsymbol{\rho}_{p 2}, z\right)} \mu\left(\Delta \boldsymbol{\rho}_{p}, z\right)
$$

Spatial One-Photon Interference: review

Intensity at the detector:

$$
I_{A}\left(\boldsymbol{r}_{p}\right) \propto S\left(\boldsymbol{\rho}_{p 1}, z\right)+S\left(\boldsymbol{\rho}_{p 2}, z\right)+W\left(\boldsymbol{\rho}_{p 1}, \boldsymbol{\rho}_{p 2}, z\right) e^{-i k_{0}\left(d_{1}-d_{2}\right)}+\text { c.c. }
$$

Cross-spectral density:

$$
\left|W\left(\boldsymbol{\rho}_{p 1}, \boldsymbol{\rho}_{p 2}, z\right)\right|=\sqrt{S\left(\boldsymbol{\rho}_{p 1}, z\right) S\left(\boldsymbol{\rho}_{p 2}, z\right)} \mu\left(\Delta \boldsymbol{\rho}_{p}, z\right)
$$

Spectral density:

$$
S\left(\boldsymbol{\rho}_{p 1}, z\right)=C \exp \left\{-(1 / 2)\left[\boldsymbol{\rho}_{p 1} / \sigma_{s}(z)\right]^{2}\right\} \quad \sigma_{s}(z)=z \sqrt{\sigma_{\mu}^{2}+4 \sigma_{s}^{2}} / 2 k_{0} \sigma_{s} \sigma_{\mu}
$$

Degree of coherence:

$$
\mu\left(\Delta \boldsymbol{\rho}_{p}, z\right)=\exp \left\{-(1 / 2)\left[\Delta \boldsymbol{\rho}_{p} / \sigma_{\mu}(z)\right]^{2}\right\} \quad \sigma_{\mu}(z)=z \sqrt{\sigma_{\mu}^{2}+4 \sigma_{s}^{2}} / 2 k_{0} \sigma_{s}^{2}
$$

Spatial Two-photon Interference

Spatial Two-photon Interference

Two-photon transverse position vector : $\quad \rho_{1} \equiv \frac{\boldsymbol{\rho}_{s 1}+\boldsymbol{\rho}_{i 1}}{2}, \quad \rho_{2} \equiv \frac{\boldsymbol{\rho}_{s 2}+\rho_{i 2}}{2} ; \quad \Delta \boldsymbol{\rho}=\rho_{1}-\rho_{2}$
Two-photon position-asymmetry vector : $\rho_{1}^{\prime} \equiv \rho_{s 1}-\rho_{i 1}, \quad \rho_{2}^{\prime} \equiv \rho_{s 2}-\rho_{i 2} ; \quad \Delta \rho^{\prime}=\rho_{1}^{\prime}-\rho_{2}^{\prime}$

Spatial Two-photon Interference

Two-photon transverse position vector : $\quad \rho_{1} \equiv \frac{\rho_{s 1}+\rho_{i 1}}{2}, \quad \rho_{2} \equiv \frac{\rho_{s 2}+\rho_{i 2}}{2} ; \quad \Delta \rho=\rho_{1}-\rho_{2}$
Two-photon position-asymmetry vector : $\rho_{1}^{\prime} \equiv \rho_{s 1}-\rho_{i 1}, \quad \rho_{2}^{\prime} \equiv \rho_{s 2}-\rho_{i 2} ; \quad \Delta \rho^{\prime}=\rho_{1}^{\prime}-\rho_{2}^{\prime}$
Coincidence count rate:

$$
R_{s i}\left(\boldsymbol{r}_{s}, \boldsymbol{r}_{i}\right) \propto S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)+S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)+W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right) e^{i k_{0}\left[\left(d_{s 1}+d_{i 1}\right) / 2-\left(d_{s 2}+d_{i 2}\right) / 2\right]}+\text { c.c. }
$$

Two-photon cross-spectral density:

$$
\left|W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right)\right|=\sqrt{S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right) S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)} \mu^{(2)}(\Delta \boldsymbol{\rho}, z)
$$

Spatial Two-photon Interference

Two-photon transverse position vector : $\quad \rho_{1} \equiv \frac{\rho_{s 1}+\rho_{i 1}}{2}, \quad \rho_{2} \equiv \frac{\rho_{s 2}+\rho_{i 2}}{2} ; \quad \Delta \rho=\rho_{1}-\rho_{2}$
Two-photon position-asymmetry vector : $\rho_{1}^{\prime} \equiv \rho_{s 1}-\rho_{i 1}, \quad \rho_{2}^{\prime} \equiv \rho_{s 2}-\rho_{i 2} ; \quad \Delta \rho^{\prime}=\rho_{1}^{\prime}-\rho_{2}^{\prime}$
Coincidence count rate:

$$
R_{s i}\left(\boldsymbol{r}_{s}, \boldsymbol{r}_{i}\right) \propto S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)+S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)+W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right) e^{i k_{0}\left[\left(d_{s 1}+d_{i 1}\right) / 2-\left(d_{s 2}+d_{i 2}\right) / 2\right]}+\text { c.c. }
$$

Two-photon cross-spectral density:

$$
\left|W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right)\right|=\sqrt{S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right) S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)} \mu^{(2)}(\Delta \boldsymbol{\rho}, z)
$$

$$
\begin{aligned}
& \text { Two-photon spectral density: } \\
& \qquad S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)=C \exp \left\{-(1 / 2)\left[\boldsymbol{\rho}_{1} / \sigma_{s}^{(2)}(z)\right]^{2}\right\} \quad \sigma_{s}^{(2)}(z)=z \sqrt{\sigma_{\mu}^{2}+4 \sigma_{s}^{2}} / 2 k_{0} \sigma_{s} \sigma_{\mu}
\end{aligned}
$$

Degree of spatial-two-photon coherence:

$$
\mu^{(2)}(\Delta \boldsymbol{\rho}, z)=\exp \left\{\begin{array}{l}
\left.-(1 / 2)\left[\Delta \boldsymbol{\rho} / \sigma_{\mu}^{(2)}(z)\right]^{2}\right\} \quad \sigma_{\mu}^{(2)}(z)=z \sqrt{\sigma_{\mu}^{2}+4 \sigma_{s}^{2}} / 2 k_{0} \sigma_{s}^{2} .
\end{array}\right.
$$

Jha and Boyd, Accepted in PRA

Two-Photon Coherence and Entanglement

Two-Photon Coherence and Entanglement

Entangled two-qubit state

$$
a=\eta S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)
$$

$$
\rho_{\text {qubit }}=\left(\begin{array}{cccc}
a & 0 & 0 & c \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
d & 0 & 0 & b
\end{array}\right)
$$

$$
b=\eta S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)
$$

$$
c=d^{*}=\eta W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right)
$$

$$
\eta=1 /\left[S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)+S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)\right]
$$

O’Sullivan et al., PRL 94, 220501 (2005) Neves et al., PRA 76, 032314 (2007)
Walborn et al., PRA 76, 062305 (2007)
Taguchi et al., PRA 78, 012307 (2008)

Two-Photon Coherence and Entanglement

Entangled two-qubit state

$$
\rho_{\text {qubit }}=\left(\begin{array}{cccc}
a & 0 & 0 & c \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
d & 0 & 0 & b
\end{array}\right)
$$

$$
\begin{aligned}
& a=\eta S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right) \\
& b=\eta S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right) \\
& c=d^{*}=\eta W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right) \\
& \eta=1 /\left[S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)+S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)\right]
\end{aligned}
$$

O'Sullivan et al., PRL 94, 220501 (2005) Neves et al., PRA 76, 032314 (2007)
Walborn et al., PRA 76, 062305 (2007)
Taguchi et al., PRA 78, 012307 (2008)

Entanglement of the state (Concurrence) :

$$
\begin{aligned}
& \text { Concurrence } \quad \text { W. K. Wootters, PRL 80, } 2245 \text { (1998) } \\
& \zeta=\rho_{\text {qubit }}\left(\sigma_{y} \otimes \sigma_{y}\right) \rho_{\text {qubit }}^{*}\left(\sigma_{y} \otimes \sigma_{y}\right) \\
& C\left(\rho_{\text {qubit }}\right)=\max \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\}
\end{aligned}
$$

Two-Photon Coherence and Entanglement

Entangled two-qubit state

$$
\rho_{\text {qubit }}=\left(\begin{array}{cccc}
a & 0 & 0 & c \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
d & 0 & 0 & b
\end{array}\right)
$$

$$
\begin{aligned}
& a=\eta S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right) \\
& b=\eta S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right) \\
& c=d^{*}=\eta W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right) \\
& \eta=1 /\left[S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)+S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)\right]
\end{aligned}
$$

O'Sullivan et al., PRL 94, 220501 (2005) Neves et al., PRA 76, 032314 (2007)
Walborn et al., PRA 76, 062305 (2007)
Taguchi et al., PRA 78, 012307 (2008)

Entanglement of the state (Concurrence) :

$$
\begin{aligned}
& C\left(\rho_{\text {qubit }}\right)=2|c|=2 \eta\left|W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right)\right| \\
& C\left(\rho_{\text {qubit }}\right)=\mu^{(2)}(\Delta \boldsymbol{\rho}, z) \quad(\text { with } a=b)
\end{aligned}
$$

W. K. Wootters, PRL 80, 2245 (1998)

$$
\zeta=\rho_{\text {qubit }}\left(\sigma_{y} \otimes \sigma_{y}\right) \rho_{\text {qubit }}^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)
$$

$$
C\left(\rho_{\text {qubit }}\right)=\max \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\}
$$

Introduction and Outline

Quantum Entanglement

- EPR paradox and non-locality, Hidden variable theories, Bell inequalities ...
- Quantum cryptography, Quantum dense coding, Quantum lithography...

Parametric down-conversion provides a source of entangled photons

$\omega_{p}=\omega_{s}+\omega_{i}$

$$
\boldsymbol{q}_{p}=\boldsymbol{q}_{s}+\boldsymbol{q}_{i}
$$

Entanglement in position and momentum
"Spatial" two-photon coherence
$l_{p}=l_{s}+l_{i}$

Entanglement in time and energy
"Temporal" two-photon coherence

Entanglement in angular position and orbital angular momentum
"Angular" two-photon coherence

Angular Fourier Relationship

Angular position

Laguerre-Gauss basis

$$
L G_{p}^{l} \quad \text { with } p=0
$$

Allen et al., PRA 45, 8185 (1992)

$$
\begin{aligned}
& A_{l}=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} d \phi \Psi(\phi) \exp (-i l \phi) \\
& \Psi(\phi)=\frac{1}{\sqrt{2 \pi}} \sum_{l=-\infty}^{+\infty} A_{l} \exp (i l \phi)
\end{aligned}
$$

Barnett and Pegg, PRA 41, 3427 (1990)
Franke-Arnold et al., New J. Phys. 6, 103 (2004) Forbes, Alonso, and Siegman J. Phys. A 36, 707 (2003)

Angular One-Photon Interference

detector

Angular One-Photon Interference

Angular One-Photon Interference

OAM-mode distribution:

$$
I_{A}=C \frac{\alpha^{2}}{\pi} \operatorname{sinc}^{2}\left(\frac{l \alpha}{2}\right)[1+\cos (l \beta)]
$$

Angular Two-Photon Interference

Angular Two-Photon Interference

Angular Two-Photon Interference

Angular Two-Photon Interference

Coincidence count rate:

$$
\begin{aligned}
\left.R_{s i}=\frac{A^{2} \alpha^{4}}{4 \pi^{2}} \right\rvert\, \sum_{l} c_{l} \operatorname{sinc} & {\left.\left[\left(l_{s}-l\right) \frac{\alpha}{2}\right] \operatorname{sinc}\left[\left(l_{i}+l\right) \frac{\alpha}{2}\right]\right|^{2} } \\
& \times\left\{1+2 \sqrt{\rho_{11} \rho_{44}} \mu \cos \left[\left(l_{s}+l_{i}\right) \beta+\theta\right]\right\}
\end{aligned}
$$

Visibility: $\quad V=2 \sqrt{\rho_{11} \rho_{44}} \mu$
Concurrence of the two-qubit state:

$$
C\left(\rho_{\text {qubit }}\right)=2\left|\rho_{14}\right|=2 \sqrt{\rho_{11} \rho_{44}} \mu=V
$$

Angular Two-Photon Interference

Coincidence count rate:

$$
\begin{aligned}
\left.R_{s i}=\frac{A^{2} \alpha^{4}}{4 \pi^{2}} \right\rvert\, \sum_{l} c_{l} \operatorname{sinc} & {\left.\left[\left(l_{s}-l\right) \frac{\alpha}{2}\right] \operatorname{sinc}\left[\left(l_{i}+l\right) \frac{\alpha}{2}\right]\right|^{2} } \\
& \times\left\{1+2 \sqrt{\rho_{11} \rho_{44}} \mu \cos \left[\left(l_{s}+l_{i}\right) \beta+\theta\right]\right\}
\end{aligned}
$$

Visibility: $\quad V=2 \sqrt{\rho_{11} \rho_{44}} \mu$
Concurrence of the two-qubit state:

$$
C\left(\rho_{\text {qubit }}\right)=2\left|\rho_{14}\right|=2 \sqrt{\rho_{11} \rho_{44}} \mu=V
$$

Angular Two-Photon Interference

Coincidence count rate:

$$
\begin{aligned}
\left.R_{s i}=\frac{A^{2} \alpha^{4}}{4 \pi^{2}} \right\rvert\, \sum_{l} c_{l} \operatorname{sinc} & {\left.\left[\left(l_{s}-l\right) \frac{\alpha}{2}\right] \operatorname{sinc}\left[\left(l_{i}+l\right) \frac{\alpha}{2}\right]\right|^{2} } \\
& \times\left\{1+2 \sqrt{\rho_{11} \rho_{44}} \mu \cos \left[\left(l_{s}+l_{i}\right) \beta+\theta\right]\right\}
\end{aligned}
$$

Visibility: $\quad V=2 \sqrt{\rho_{11} \rho_{44}} \mu$
Concurrence of the two-qubit state:

$$
C\left(\rho_{\text {qubit }}\right)=2\left|\rho_{14}\right|=2 \sqrt{\rho_{11} \rho_{44}} \mu=V
$$

Jha, Leach, Jack, Franke-Arnold, Barnett, Boyd, and Padgett, PRL 104, 010501 (2010)

Angular Two-Photon Interference

OAM-mode detector

Coincidence count rate:

$$
\begin{aligned}
\left.R_{s i}=\frac{A^{2} \alpha^{4}}{4 \pi^{2}} \right\rvert\, \sum_{l} c_{l} \operatorname{sinc} & {\left.\left[\left(l_{s}-l\right) \frac{\alpha}{2}\right] \operatorname{sinc}\left[\left(l_{i}+l\right) \frac{\alpha}{2}\right]\right|^{2} } \\
& \times\left\{1+2 \sqrt{\rho_{11} \rho_{44}} \mu \cos \left[\left(l_{s}+l_{i}\right) \beta+\theta\right]\right\}
\end{aligned}
$$

Visibility: $\quad V=2 \sqrt{\rho_{11} \rho_{44}} \mu$
Concurrence of the two-qubit state:

$$
C\left(\rho_{\text {qubit }}\right)=2\left|\rho_{14}\right|=2 \sqrt{\rho_{11} \rho_{44}} \mu=V
$$

Jha, Leach, Jack, Franke-Arnold, Barnett, Boyd, and Padgett, PRL 104, 010501 (2010)

Angular Two-Photon Interference

Coincidence count rate:

$$
\begin{aligned}
\left.R_{s i}=\frac{A^{2} \alpha^{4}}{4 \pi^{2}} \right\rvert\, \sum_{l} c_{l} \operatorname{sinc} & {\left.\left[\left(l_{s}-l\right) \frac{\alpha}{2}\right] \operatorname{sinc}\left[\left(l_{i}+l\right) \frac{\alpha}{2}\right]\right|^{2} } \\
& \times\left\{1+2 \sqrt{\rho_{11} \rho_{44}} \mu \cos \left[\left(l_{s}+l_{i}\right) \beta+\theta\right]\right\}
\end{aligned}
$$

Visibility: $\quad V=2 \sqrt{\rho_{11} \rho_{44}} \mu$
Concurrence of the two-qubit state:

$$
C\left(\rho_{\text {qubit }}\right)=2\left|\rho_{14}\right|=2 \sqrt{\rho_{11} \rho_{44}} \mu=V
$$

Jha, Leach, Jack, Franke-Arnold, Barnett, Boyd, and Padgett, PRL 104, 010501 (2010)

Angular Two-Photon Interference

$$
\rho_{\text {qubit }}^{(c)}=\left(\begin{array}{cccc}
\rho_{11} & 0 & 0 & \rho_{14} \\
0 & \rho_{22} & 0 & 0 \\
0 & 0 & \rho_{33} & 0 \\
\rho_{14} & 0 & 0 & \rho_{44}
\end{array}\right) \quad \begin{aligned}
\rho_{14} & =\rho_{41}^{*} \\
& =\sqrt{\rho_{11} \rho_{44}} \mu e^{i \theta} \\
\rho_{11} & +\rho_{22}+\rho_{33}+\rho_{44}=1
\end{aligned}
$$

Concurrence of the two-qubit state:

$$
C^{(c)}\left(\rho_{\text {qubit }}\right)=V^{(c)}-\sqrt{\rho_{22} \rho_{33}}
$$

Jha, Leach, Jack, Franke-Arnold, Barnett, Boyd, and Padgett, PRL 104, 010501 (2010)

Angular Two-Photon Interference

$$
\rho_{\text {qubit }}^{(c)}=\left(\begin{array}{cccc}
\rho_{11} & 0 & 0 & \rho_{14} \\
0 & \rho_{22} & 0 & 0 \\
0 & 0 & \rho_{33} & 0 \\
\rho_{14} & 0 & 0 & \rho_{44}
\end{array}\right) \quad \begin{aligned}
\rho_{14} & =\rho_{41}^{*} \\
& =\sqrt{\rho_{11} \rho_{44}} \mu e^{i \theta} \\
\rho_{11} & +\rho_{22}+\rho_{33}+\rho_{44}=1
\end{aligned}
$$

Concurrence of the two-qubit state:

$$
C^{(c)}\left(\rho_{\text {qubit }}\right)=V^{(c)}-\sqrt{\rho_{22} \rho_{33}}
$$

Jha, Leach, Jack, Franke-Arnold, Barnett, Boyd, and Padgett, PRL 104, 010501 (2010)

Summary and Conclusions

1. Temporal two-photon interference

(i) Presented a description of temporal two-photon coherence in terms of ΔL and ΔL^{\prime}
(ii) Showed that time-energy entanglement can also be explored using geometric phase

2. Spatial two-photon interference

(i) The spatial coherence properties of the pump beam get entirely transferred to the spatial coherence properties of the entangled two-photon field.
(ii) The entanglement of spatial two-qubit state is equal to the degree of spatial two-photon coherence

3. Angular two-photon interference

(i) Verified angular Fourier relationship using entangled photons
(ii) Studied angular two-photon interference effects and demonstrated an angular two-qubit state

Acknowledgments

- Prof. Robert Boyd
- Prof. Carlos Stroud
- Prof. Emil Wolf
- Prof. Miles Padgett and his research group (Jonathan Leach, Barry

Jack, Sonja Franke-Arnold)

- Prof. Steve Barnett
- Dr. Cliff Chan, Malcolm O'Sullivan, Mehul Malik
- The US Army Research Office, The US Air Force Office

Angular One-Photon Interference

 detector

Angular One-Photon Interference

Two-Photon Interference: A two-photon interferes with itself

$$
\begin{aligned}
& \Delta L \equiv l_{1}-l_{2} \\
& \quad \text { Two-photon path-length } \\
& \Delta L^{\prime} \equiv l_{1}^{\prime}-l_{2}^{\prime}
\end{aligned}
$$

Two-photon path-asymmetry length
$\Delta \phi \equiv\left(\phi_{s 1}+\phi_{i 1}+\phi_{p 1}\right)-\left(\phi_{s 2}+\phi_{i 2}+\phi_{p 2}\right)$

Necessary conditions for
$R_{s i}=C\left[1+\gamma^{\prime}\left(\Delta L^{\prime}\right) \gamma(\Delta L) \cos \left(k_{0} \Delta L+k_{d} \Delta L^{\prime}+\Delta \phi\right)\right]$

$$
k_{d} \equiv\left(k_{s 0}-k_{i 0}\right) / 2
$$

$$
\begin{aligned}
& \Delta L<l_{\text {coh }}^{p} \\
& \Delta L^{\prime}<l_{\text {coh }}
\end{aligned}=\frac{c}{\Delta \omega} \sim 10 \mathrm{~cm}, ~ \mu \mathrm{~m}
$$

Jha, O'Sullivan, Chan, and Boyd, Phys. Rev. A. 77, 021801(R) (2008)

Introduction

Quantum Entanglement

Led to many foundational work in Quantum Mechanics

- EPR paradox and non-locality A. Einstein et al., Phys. Rev. 47, 777 (1935)
- Hidden variable theories
J. S. Bell, Physics 1, 195 (1964)
- Bell inequalities
D. Bohm, Phys. Rev. 85, 166 (1952)

Has applications in Quantum Computation and Quantum Information

- Quantum cryptography
A. K. Ekert, PRL 67, 661 (1991)
- Quantum dense coding
C. H. Bennett et al., PRL 69, 2881 (1992)
- Quantum lithography
-
-

Entanglement can exist between Photons, Atoms, Ions,...

Parametric down-conversion provides a source of entangled photons

Outline

Parametric down-conversion (PDC)

Outline

Parametric down-conversion (PDC)

Outline

Parametric down-conversion (PDC)

